
System Dynamics Lags/delays
Many systems do not respond immediately to 

time before starting to change.
E.G. When a turned off motor is supplied with a 
certain amount of energy, it will take certain time to 
beat its own inertia in order to start moving.



Exercise: there is a lag/delay in the 
following systems?

Time

Request
Response



System Dynamics Stability
The stability is determined by the response of the system to inputs or 
disturbances. A system which remains in a constant state unless affected by an 
external action and which returns to a constant state when the external action is 

constant value, instead they keep increasing.

stabilizes in steady state ( ) after applying a unit-step input using the following 
formula:

If this limit tends to a constant, the system is stable. If it tends to infinity, the system is 
unstable.



System Dynamics Order
A system can have different type of behaviors. This is 
determined by the differential equations that model the 
system and affects how it responds to an input during the 
transient state. Depending on the order of this differential 
equations, the system may respond to an external step input 
as follows: 

First Order Second Order
(Overdamped 
Critically Damped)

Second Order
(Underdamped)



System Dynamics First Order Plus Dead 
Time Model (FOPDT)

Where:
: Process gain, represented as the change in the induced by a unit change in the 

. It can be calculated measuring the steady state output value.
Process time constant. Is the amount of time needed for the to reach the of 

the way to the steady state vale ( ). This value affects the speed of the system response, usually 
the system stabilizes at .

Process delay. Time required for the system to start variations after an applied external input



System Dynamics Second Order Plus 
Dead Time Model (FOPDT)

Where:
: Process gain, represented as the change in the induced by a unit change in the . It can be 

calculated measuring the steady state output value.
Damping factor.

If this value is greater than one ( ), the system will be over damped.
If equal to one ( ), the system will be critically damped.
If less than one ( ), the system will be under damped.

Process delay.  The amount of time required for the system to start variations after an applied external input.
Note: A second order system can be approached to a first order system but the model will lose accuracy.



Exercise: identify the order of the 
following systems



But, how to identify the 
mathematical model that represents 

the behavior of a real system?  
The process reaction curve (Marlin, 2000): Consists in manually finding the First Order Plus 
Dead Time (FOPDT) parameters from a system response plot. This method is simple to 
perform but can be inaccurate because it depends in the user eye and is only restricted to 
FOPDT model.
Statistical lineal regression methods (Marlin, 2000): Consist in finding a process model 
through parameter estimation using linear regression methods and real time process data 
with an injected input. This method requires to have the dataset of the real system with a 
sample time enough to capture correctly the transitions of the system and the delay after 
input. It uses the linear least squares algorithm and it can only be used to fit FOPDT model.
Statistical non linear regression methods (Pintelon et al, 2012; Box and Jenkins, 1976): 
Generally used for second or higher order system dynamics response. They require nonlinear 
optimization methods and the dataset from an injected setpoint to the system. This method 
can provide greater accuracy to fit a system dynamics dataset response into a model but it 
requires higher computation.

E. Marlin, T. (2000). Process Control: Designing Processes and Control Systems for Dynamic Performance. New York: McGraw-Hill (Second, pp. 
176 206). New York, NY, USA: McGraw-Hill, Inc. Retrieved from http://pc-textbook.mcmaster.ca/
Pintelon, R., & Schoukens, J. (2012). System Identification: A Frequency Domain Approach, Second Edition. System Identification: A Frequency 
Domain Approach, Second Edition, 39(6), 3276 3287. https://doi.org/10.1002/9781118287422
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time Series Analysis: Forecasting & Control. Book. 
https://doi.org/10.1016/j.ijforecast.2004.02.001



Identifying the mathematical model of the behavior of a system through 
geometric first order plus dead time approximation

This method consists in identifying the parameters from a system response plot, finding all the parameters for a First Order Plus Dead Time model. 
The steps to use this method are:
1. Allow the process to reach steady state.
2. Introduce a single step change in the input variable.
3. Collect input and output response data until the process again reaches steady state
4. Perform the graphical process reaction curve calculations:

I. Identify the steady step in the plot and calculate the process gain , finding the Y axis values ( ) for the Output signal and the 
Setpoint ( ) at the beginning and when the input signal was injected.

II. Measure the delay , which is the distance from the beginning of the Setpoint injection to when the Output signal starts to increase.
III. Calculate the of the Output in steady state and find its corresponding value in time axis. Subtract the delay from this time 

value and this will be the process time constant .
IV. Replace the calculated parameters into the First Order Plus Dead Time system model.



Identifying the mathematical model of the 
behavior of a system through the statistical 

regression method (using Matlab)

Process for acquiring a mathematical model from a real 
system response.
This model is usually a transfer function in Laplace 
Domain.
Commonly used as the first step to control a system.
Consists in 3 steps:

Process
Implementation Data Acquisition Model Fitting



1. Connect all the actuator, sensors and interfaces 
required to the selected Data acquisition hardware.

Process
Implementation Data Acquisition Model Fitting

CPU



2. Implement a software that is able to inject a Setpoint at a desired 
time and starts reports the Setpoint, Measurement and Time in a 
file (e.g. Arduino Datalogger).

Process
Implementation Data Acquisition Model Fitting

void datalog() {
if (millis() - tinis >= TSAM) {
stime = stime + TSAM / 1000.0;
//SD Logging
String datalog = ""; //Define datalog as string for storing data 

in SD as text
datalog += String(Setpoint, 4);
datalog += ",";
datalog += String(Measurement, 4);
datalog += ",";
datalog += String(stime, 4);
File dataFile = SD.open("datalog.txt", FILE_WRITE);
// if the file is available, write to it:
if (dataFile) {
dataFile.println(datalog);
dataFile.close();
// print to the serial port too:
//Serial.println("Success logging data");

}
// if the file isn't open, pop up an error:
else {
//Serial.println("error opening datalog.txt");

}
tinis = millis(); //Reset tini

}
}

void loop() {
Measurement = smooth(SENSOR, total, readings, readIndex, 

NUMREADS); //Acquire measurement and smooth it through 
RMA

if 
(debounce(SW,ledState,buttonState,lastButtonState,tinid)==tr
ue) {

Setpoint = SPF; //Assign the desired setpoint
}
else {

Setpoint = 0; //Clear the desired setpoint
}
datalog();  //Datalog variables
printvars();  //Print vars for debug
analogWrite(ACTUATOR, Setpoint*255.0/1023.0);  //Inject the 

setpoint to the output
}

https://github.com/tidusdavid/arduino-datalogger



Process
Implementation Data Acquisition Model Fitting

4. Inject a Set-point (SP) to the system by running the data acquisition
software connected to hardware system.

.csv

.txt

5. Report since the setpoint injection a datalog until the system reaches 
stability or steady state (only applies for stable systems) in a .txt file (storing 
Setpoint, Measurement and Time).



6. Use a system identification software to obtain a transfer function model with high 
correlation to the real system, using the previous dataset acquired. E.g., Control 
Station or Matlab.

Setpoint
there is an offset in the Setpoint
amplitude. Also both signals must be positive (apply abs to them if there are negative values). 

Process
Implementation Data Acquisition Model Fitting

1) 2) 

0) 



Process
Implementation Data Acquisition Model Fitting

(For Matlab only)

6. 0) Import stored dataset in .txt to Matlab Workspace 
drag and dropping the file into the Matlab Command 
Window.



Process
Implementation Data Acquisition Model Fitting

(For Matlab only)

6. 0) Import the data as Column Vectors



Process
Implementation Data Acquisition Model Fitting

(For Matlab only)

6. 0) Plot Setpoint ( ) and Measurement ( ) versus time to see if data is 
correct (without offsets and noise) in Matlab.

Use plot(t,SP) and plot(t,Y)
Correct the offset removing the mean value of Y before the Setpoint was 
injected Y=Y-Offset;



Process
Implementation Data Acquisition Model Fitting

(For Matlab only)
6. 1) Open System Identification App and import SP and 
Measurements using Import data/Time domain data.

Specify the sample time and starting time of the signals.



Process
Implementation Data Acquisition Model Fitting

(For Matlab only)

6. 2) Estimate process model using a First Order 
Plus Dead Time (FOPDT) model.



Process
Implementation Data Acquisition Model Fitting

(For Matlab only)
6. 3) Check Model output correlation to see if it fits (recommended 
greater than 80%)

If the correlation is low, try to use a second order plus dead time 
model (SOPDT) or filter better your data from noise (acquire new 
dataset if required).



Process
Implementation Data Acquisition Model Fitting

(For Matlab only)

6. 4) Observe the identified model and export it 
to workspace.



Control
The purpose of a controller is to calculate a signal (corrective or control action) that is suitable for 
the system in order to reach a zero error.
The controller can be designed in order to modify transient and steady states behavior depending 
on the system response requirements.
The most important requirements are:

Stability: The system must have a constant steady state.
Maximum Overshoot ( ): Defined as the maximum percentage of the output signal with respect to the 
steady state value during transient state.
Stablishing time ( ): The time for the system to stabilize to INPUT desired value.



Control variations for different requirements
Controller Type Application

Finite State 
Machine (FSM)

used to give a set of system states and transitions between them 
depending on inputs variation and the internal variables. This type 

system modes or states.

ON/OFF 
Controller

This controller is mostly used in applications

temperature systems. E.G. Electric stoves with low, medium or high 
temperatures selector.

PID Controller

The PID controller can provide control action designed for specific 
process requirements. The response of the controller can be 
described in terms of the responsiveness of the controller to an 
error, the degree to which the controller overshoots the setpoint, 

that require accuracy, fast response to changes and stability.

Advanced self 
adaptive 

controllers

This type of controllers are used to systems that can vary due to 
context changes or critical fail-proof systems. This controllers can get 
a model of the system on run-time and adapt or compute new gains 
to adjust the overall controller.



Control Systems Architecture
A block diagram standard loop is a suitable and easy way of representing 
all the elements involving a controller and the system.
It includes the inputs, outputs and control signals represented by three 
elements:

Boxes: Representation of system, such as controllers, filters, interfaces, 
actuators and sensors.
Arrows: Used for showing the flow and direction of control signals.
Circles: Indicate comparisons of sums or differentiation.

The following image shows a simplified representation of a control 
systems architecture block diagram, which will be detailed in the next 
slides.

+
-



Control Systems Architecture Detailed

The following block diagram shows an expanded and more detailed 
version of the control system architecture, including:

Actuators with their Power Interfaces.
Sensors with their respective interfaces required for conditioning its signal.

+
-



Setpoint (SP)

Also called Desired Value, Set Value (SV), Target Value
or Adjusted Parameter.
This value is the goal set for the closed loop controller, 
that is, to what value of the physical variable you want 
to reach.

For example: in a temperature controller for boiling water, 
your desired value (Setpoint) for making the water to boil 
is 100°C. Then the controller will try to reach this goal.

The purpose of feedback systems is to reach the 
Setpoint and maintain it over the time even if there 
are disturbances in the context or the environment.

+
-



Also called Process Variable (PV) or tracked metric.
Is the current measured value of a particular part of a 
process that is being monitored or controlled.
In control theory, this variable is compared with the 
setpoint in order to calculate the actual error of the 
controlled system.
This variable is the feedback obtained from the system 
response to control signals.

For example: In the temperature controller for boiling water, the 
Process Variable is the current or actual temperature of the 
system, which can be measured using a thermometer. We 
require this variable in order to verify that the system reached 
the setpoint correctly (previously set on 100°C).

This variable is obtained through the sensors of the system.

+
-Measurement (Y)



The error is the difference between the Setpoint and the Measurement:

The job of the controller is to calculate a corrective action based on the 
actual error:

If the error is positive ( ), it means that the Setpoint is higher than the 
Measurement. So the corrective action will need to raise the to reach the 

.
If the error is negative ( ), it means that the Measurement is higher than 
the Setpoint. In this case, the corrective action needs to lower in order to 
reach .
If the error is approximately zero ( ), it means that the Setpoint and 
Measurement are almost equal, so the controller needs to keep the current 
corrective action to maintain the system in this state.

For example: in the temperature controller for boiling water, the Setpoint
is 100°C and the Measurement says that the system is at 60°C. The actual 
error in this system will be . This means 
that the controller needs to keep raising the corrective action in order to 
increase the current temperature.

Error (E) +
-



The control action is calculated using the 
error.
The corrective action is reflected on the 
system through the Power Interface and 
Actuators.
Its input is the and its output is the 

.

Controller ( )
+
-



The most basic controller.
Consist in a simple ON/OFF switch:

If the error is positive ( ), the corrective action will be to turn fully ON the system plant.
If the error is negative ( ), the corrective action will be to turn fully OFF the system plant. 

The main problem of this controller is that the system never settles down to a 
steady state, it oscillates constantly and rapidly betwen its two extreme states
(Fully ON or Fully OFF) which can damage the actuator.
To improve this rapid change, a dead zone or an hysteresis can be implemented:

Dead Zone: The controller will not send a signal to the plant unless the error exceeeds some
threshold value.
Hysteresis: The controller maintains the same corrective action while the error switches from
positive to negative after a certain threshold value.

ON/OFF Controller



The magnitude of the corrective action depend on the magnitude of the error.
In other words, the Control Action ( ) will be directly proportional to error signal.

If the error increases, the control action increases.
If the error decreases, the control action decreases.

They are insufficient to eliminate error in steady state ( ) entirely:
Proportional droop: The system output or measurement ( ) will always be less than the
desired setpoint value ( ).
The can be reduced by increasing the proportional constant ( ) but doing can make the 
system unstable.

Proportional Controller

+
-



The most frequent used controller.
Adding an Integral part to the controller eliminates the proportional droop
amplifying the accumulated error over time and adding it to the controller action.
The integral part calculates its control action using the accumulated error over a 
specifyed time, keeping track of the PAST of the system.
The Control Action ( ) with proportional and integral control is:

This controller may introduce oscillations.

Proportional-Integral Controller (PI)

+-



The most convenient controller for certain applications.
Adding an Derivative part to the controller counteracts error growth chance in the FUTURE of the 
system.
The derivative part calculates its control action using the error change with respect to the time.

For discrete-time computer implementation, the derivate is a difference between the actual error and the 
previous error in a period of time.

The Control Action ( ) with proportional, integral and derivative control is:

This controller may be very sensitive to electronic noise and produce unstable behavior.

Proportional-Integral-Derivative
Controller (PID)

+
-

Note:



Proportional influence in system dynamics

Increasing it reduces the error but increases the oscillations

+
-



Proportional-Integral influence in system dynamics
Integral corrects the steady state error.

Increasing it reduces stablishing time but after a certain value it will start to increase the stablishing time 
and oscillations.

+-



Proportional-Integral-Derivative influence in system dynamics
Derivative gives speed to the system by anticipating the future.

Increasing it reduces stablishing time but makes the system very sensitive to changes, which can make the 
system unstable if there is noise.

+
-



Tuning is used for calculating the gain parameters ( ).
The main objectives of tuning are:

Guarantying stability.
Optimizing behavior of the system depending on the requirements of the situation.

Tuning each gain parameter can change the system behavior as follows:
Increasing : increases speed, decreases stability and enhances noise in action.
Increasing : decreases speed, decreases stability, reduces noise in action, eliminates steady-state 
errors more quickly and increases the tendency to oscillate.
Increasing 

There are heuristic methods for tuning like the Ziegler-Nichols rules. This methods allows to calculate 
a stable controller but with a fixated performance that usually is acceptable for most of the 
applications.
Ziegler Nichols Tuning Method:

1. Set the integral ( ) and derivative ( ) gains to zero (Only proportional controller).
2. Start increasing the proportional gain ( ) until it reaches the ultimate gain (this happens when the 

measurement of the system response, to a unit step SetPoint, has stable consistent oscillations, increasing 
this gain more than this value will cause the system to be unstable).

3. Measure the period of the oscillations and set the PID controller gains according to the following table:

PID Controller Tuning

Control Type
Note:



Control Tuning Step by Step
1. Implement a first version of the system connecting all the sensors, actuators, 

interfaces and required processors with corresponding software.
2. Inject a setpoint to the system of a desired value.
3. Report since the setpoint injection a datalog until the system reaches stability or 

steady state (only applies for stable systems)
4. Use a system identification software using as input the previous generated 

datalog in order to acquire a mathematical model of the system in transfer 
function form.

5. Tune a controller using the previous model and acquire the control parameters.
6. Test the tuned controller through simulation and verify its system dynamics 

performance (Maximum overshoot, stabilization time).
7. Adjust the parameter until the performance meets the desired requirements.
8. Implement a second version of the system adding the control parameters 

previously tuned and the required control algorithm.
9. Inject a setpoint to the system and evaluate its behavior in terms of the system 

dynamics performance.
10. Tune again the control parameters in order to improve the system performance 

in real implementation.


